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We have developed a new algorithm for calculating magnetic surfaces and coordinates for 
a given three-dimensional magnetic field. The algorithm serves also to solve the equivalent 
problem of computing invariant tori and action-angle variables for a one-dimensional time- 
dependent numerically specified Hamiltonian (or a two-dimensional time-independent 
Hamiltonian). Our approach combines features of both iterative and trajectory following 
methods. This allows us to overcome the inefficiency of trajectory following methods near low 
order rational surfaces, while retaining some of the robustness of these methods. “3 ,991 
Academic Press, Inc 

I. TNTR~DUCTION 

A magnetic coordinate system for a given magnetic field is a set of toroidal COOT- 
dinates providing a Clebsch representation for the field. These coordinates play a 
fundamental role in the study of magnetic fields for plasma conhnement. They 
correspond to action-angle variables for the Hamiltonian flow dehned by the 
magnetic field lines. In this paper, we discuss the numerical computation of 
magnetic coordinates for a given three-dimensional magnetic field. This corresponds 
to the numerical computation of action-angle variables for a one-dimensional, 
time-dependent (or two-dimensional, time-independent) numerically specified 
Hamiltonian. 

Algorithms in use for the calculation of magnetic coordinates in three dimensions 
[14] reconstruct the coordinates from information obtained by following 
magnetic field lines. These methods are inefficient when the rotational transform 
(winding number of the Hamiltonian) is near a low order rational. The field 
line must then be followed over a great distance to sample adequately the corre- 
sponding flux surface. Iterative methods of sampling the flux surface naturally 
suggest themselves. Iterative methods, however, are sensitive to the initial guess, 
and can display instabilities, in contrast to the field line following methods, which 
are robust. We have developed a hybrid approach which uses information obtained 
by field line following both in the formulation of an iteration procedure and the 
provision of initial conditions for the iteration. This appears to combine the best 
features of both methods. 
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In other contexts, the numerical calculation of action-angle variables has been an 
active field of research, with a large literature. The primary applications have been 
to the semiclassical quantization of atomic and molecular systems. The focus here 
has been on the calculation of the energy levels corresponding to the quantized 
levels of the action, with the action-angle variables themselves generally of 
secondary interest. A review of this area can be found in Refs. [S, 61. References 
[7, S] contain a discussion of more recent work. The numerical computation of 
action-angle variables has also been studied in the context of applications to 
dynamical problems in astrophysics [9, lo] and for application to high energy 
particle accelerators [ 111. There has also been closely related work on the theory 
of area preserving mappings [ 12, 131. 

Generally speaking, there have been two different approaches to the problem of 
numerically calculating action-angle variables, trajectory following and iterative. 
(We do not include here the adiabatic switching approach [ 141, which locates 
quantizing trajectories without actually solving for the action-angle variables.) 
Trajectory following methods integrate Hamilton’s equations to determine the 
trajectories, and use information about the trajectories to construct action-angle 
variables. A widely used method that has been developed independently in the 
context of plasma applications [ 1, 2, 41, astrophysical applications [9], and 
applications to semiclassical quantization [ 15, 161 employs a Fourier decomposition 
of the coordinates along the trajectories. Identification of the discrete frequencies in 
these spectra, along with a calculation of the corresponding spectral amplitudes, 
allows a direct determination of the action-angle variables. This Fourier approach 
has the attractive feature that it uses all of the information obtained in following 
trajectories (field lines), and thus minimizes the distance over which the 
computationally expensive trajectory integrations must be performed. 

Shenker and Kadanoff [13] have introduced a similar method for studying area 
preserving maps. They construct a transformation to a coordinate system where the 
map becomes a twist map, analogous to the transformation of a Hamiltonian 
system to action-angle variables. The transformation is computed by performing 
Fourier decompositions along a set of periodic orbits which successively 
approximate the trajectory of interest. By using a sequence of periodic orbits, this 
approach avoids the need for a window function in the Fourier decomposition 
along the trajectory. The approach is otherwise very close to the Fourier methods 
cited above. 

Methods that use trajectory information suffer from the fundamental limitation 
that they must follow the trajectories sufficiently far to see the longest periodicities 
in the orbit. That is, the orbit must adequately sample the surface of the invariant 
toroid. In following the field lines of a magnetic field, the lines must be followed suf- 
ficiently far to sample adequately the corresponding flux surface. When the winding 
number of the Hamiltonian (rotational transform of the magnetic field) is nearly 
rational, the orbit is nearly periodic. This is illustrated in Fig. 1, which schemati- 
cally shows a return map on a near-rational surface. The numbers in the figure label 
successive intersections of the trajectory with the plane of the figure. Only after 
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FIG. 1. Sketch of the return map on a near-rational surface. The numbers label successive inter- 
sections of the trajectory with the plane of the figure. 

many returns of these nearly periodic orbits does the trajectory sample the whole 
of the invariant toroid. This qualitative picture can be made precise by determining 
the accuracy of the calculated action-angle variables as a function of the distance 
over which trajectories are followed [4]. The distance required to maintain a fixed 
accuracy goes to infinity as a rational surface is approached. (Of course, only a 
finite number of Fourier modes is retained in any numerical calculation, so that in 
practice it is only the low order rationals that pose difficulties.) 

The other approach to calculating action-angle variables has been iterative. (The 
perturbative methods can be viewed as a special case of the iterative ones. The 
iterative methods, in fact, often reduce to perturbative ones in appropriate limits.) 
Iterative methods do not suffer the same degradation in efficiency near rational sur- 
faces as trajectory following methods. This is illustrated in Fig. 5, which shows the 
number of magnetic field evaluations required to calculate action-angle variables by 
trajectory following and iterative methods for a series of cases approaching a 
resonance. The details of this calculation will be discussed in Section V. 

In contrast to the field line following methods, which are robust, iterative 
methods display numerical instabilities. The stability properties can be sensitive to 
the initial guess for the action-angle variables. We have developed a new code 
which uses information obtained by field line following both in the formulation of 
an iteration procedure and the provision of initial conditions for the iteration. This 
appears to combine the best features of both methods. 

The iterative part of our approach is close to the approach of Refs. [lo, 11, 
17-191 for calculating action-angle variables. A similar iterative procedure was also 
used by Percival in Ref. [ 121 to study the breakup of a KAM surface for an area- 
preserving map. The Newton’s method we study is also closely related to the super- 
convergent schemes for determining action-angle variables in Fourier space which 
serve as the basis for KAM proofs. We Fourier decompose Hamilton’s equations 
with respect to the angular and time coordinates to obtain a set of coupled, non- 
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linear, algebraic equations. These are the equations to which we apply iterative 
methods of solution, solving for the Fourier components of the transformation from 
action-angle variables to the initial coordinate system. 

To enhance the stability of the iteration procedure, and to speed its convergence, 
we can eliminate some of the Fourier components of Hamilton’s equations by 
making use of information obtained in following trajectories. Following trajectories 
over a relatively short distance, we determine a set of linear relations between the 
Fourier components. These can be used to eliminate some of the nonlinear equa- 
tions in favor of linear equations, and to provide a good initial guess for the 
iterative scheme. We find that Picard iteration is not sufliciently stable to form the 
basis of a useful iterative scheme, but that Newton’s method does serve our 
purposes. 

Throughout this paper we will be studying only integrable trajectories. Only for 
such trajectories do invariant tori and action-angle variables exist. 

Section II describes the relation between magnetic coordinates and action-angle 
variables. Section III discusses trajectory following methods and their degradation 
in efficiency near low order rational surfaces. In Sections IV and V we describe a 
series of numerical experiments in which we test iterative methods for the calcula- 
tion of action-angle variables, both alone and in combination with trajectory 
following methods. Section IV discusses Picard iteration, and Section V discusses 
Newton’s method. In Section VI we use information obtained in our numerical 
experiments to derive general estimates of the efficiency of iterative methods. 
Finally, Section VII discusses and summarizes our results. 

II. MAGNETIC COORDINATES AND ACTION-ANGLE VARIABLES 

In this section we describe the relation between magnetic coordinates and action- 
angle variables. The magnetic field is a three-dimensional Hamiltonian vector field. 
Integral curves (trajectories) of the Hamiltonian correspond to magnetic field lines. 
Integrable trajectories lie on invariant toroids in phase space. The corresponding 
surfaces for magnetic fields are called flux surfaces. Action-angle variables for the 
invariant toroids correspond to magnetic coordinates for the flux surfaces. Various 
correspondences between Hamiltonian systems and three-dimensional magnetic 
fields are summarized in Table I. 

In magnetic coordinates with the radial coordinate normalized to the enclosed 
toroidal flux, the magnetic field B can be written in covariant form as [20, 213 

B=VII/xV0+1VdxV$, (1) 

where j($) is the rotational transform (winding number or twist) of the magnetic 
field line on a given $ surface, and 0 and 4 are, respectively, poloidal and toroidal 
angles. The covariant expression for B is closely related to the Clebsch form 

B=V$xV(G$d). (2) 
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TABLE I 

Correspondence between Various Quantities in the 
Language of Magnetic Coordinates and the Language 

of Hamiltonian Mechanics 

Hamiltonian systems Magnetic fields 

Trajectory 
Invariant toroid 
Elliptic fixed point 
Time I 
Action J 
Angular coordinate 0 
Hamiltonian H 
Winding number w 

Magnetic field line 
Flux surface 
Magnetic axis 
Toroidal angle q3 
Toroidal flux $ 
Poloidal angle fl 
Poloidal flux $,, 
Rotational transform f 

To bring out the Hamiltonian structure of the magnetic field, we define a 
poloidal flux function $, ($) which satisfies 

(3) 

The equations for the magnetic field line trajectories take the form 

d$/dq5 = B*/B” = - i3),/i%’ = 0, 

de/d4 = B’/B” = a$,/h,b = d($ 1. 
(4) 

These are Hamilton’s equations in action-angle variables, where II/,, is the 
Hamiltonian, II/ is the action variable, 0 is the angle variable, and 4 plays the role 
of time. The contravariant magnetic field component B* is defined by 

B$=B.V$, (5) 

with similar definitions holding for B” and B6. 
Computational details of a method for determining action-angle variables by 

Fourier decomposing the coordinates along trajectories are presented in Section III. 
In this method, one seeks a Fourier decomposition of the Cartesian (physical) 
coordinates as a function of magnetic coordinates, 

x(ll/, &4) = 1 xnm (II/) evCi(n4 - m@l. 
*,?I 

(6) 

In the language of Hamiltonian mechanics, the function x($, 6,#) represents a 
(“time-dependent”) transformation from action-angle variables ($, 6,d) to a 
laboratory coordinate system represented by the vector x. Since the trajectory of 
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a field line in magnetic coordinates is 8 = &5 + O,, Fourier decomposition of the 
coordinates x along a field line assumes the form 

(7) 

The identification of the mode numbers, n and m, associated with each of the peaks 
in the one-dimensional spectrum completes the determination of the transformation 
to magnetic coordinates from trajectory data. Details are summarized in Section III. 

An alternative method for determining magnetic coordinates is suggested by 
rewriting the canonical form of B, Eq. (1) in contravariant form, 

where 

is the Jacobian of the transformation from Cartesian to magnetic coordinates. 
A Fourier transformation gives 

(n -%m) x,,, = LYBL, (10) 

where n is the toroidal mode number and m is the poloidal mode number. The 
iterative solution of Eq. (lo), supplemented by the condition 

I= wv%o= w%o (11) 

for the winding number i, forms the basis for an alternative calculation of magnetic 
coordinates and will be discussed in detail in Sections IV, V, and VI. 

In the language of Hamiltonian mechanics, the “time rate of change” of the 
laboratory coordinates along a trajectory is given by 

Thus, Eq. (8) expresses Hamilton’s equations in laboratory coordinates. 
A number of test cases are used in this paper to study properties of the 

algorithms for calculating magnetic coordinates. The test case we use most often 
corresponds to an anharmonic oscillator Hamiltonian, 

ff= U/2)(P2 +&12) + B3q3 + 8444, (13) 

where /3x and /I4 are adjustable parameters. The Hamiltonian is time independent, 
corresponding to a two-dimensional magnetic field, independent of the toroidal 
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angle 4. An equivalent magnetic field in a periodic cylinder is obtained by 
identifying q and p with stretched Cartesian coordinates and transforming to polar 
coordinates Y, 8: 

q = t(j- ‘!2,y; n=rcos 0 (14) 
p = fy’y; y = Y sin 0. (15) 

Identifying H with the poloidal flux function $P, and making the replacement 
(x3 = 1; 5/2aj and c(~ =,fr3fi4, yields 

l&=t&r” + cI~Y3COS3 0 + qr4cos4 O), (16) 

in terms of which the magnetic field is 

B=R;V~+V#xV$,. (17) 

For x3 = a4 = 0 the flux surfaces are circular. If either of these parameters are non- 
zero, then the flux surfaces are distorted, and, with an appropriate choice of clj and 
x4> a separatrix can be introduced. In the calculations to be presented, the outer 
edge of the plasma corresponds to a surface through the point r = 1 at 0 = 0. It is 
on this surface that convergence properties of the algorithms are investigated. 

III. A TRAJECTORY FOLLOWING METHOD AND ITS EFFICIENCY 

In this section we estimate the efficiency of a trajectory following method 
[ 1, 2,4, 9, 15, 161 for obtaining action-angle variables. We will see that the method 
becomes inefficient when the winding number is near a low order rational. We will 
also see that the difficulty is not restricted to the described method, but is a 
fundamental limitation of all trajectory following methods. This will motivate our 
consideration of iterative methods, both alone and in combination with trajectory 
following. 

We wish to obtain a Fourier decomposition of the Cartesian coordinates as a 
function of magnetic coordinates, as expressed by Eq. (6). The correspondence with 
Eq. (7) allows us to determine the required Fourier coefficients from a Fourier 
decomposition of the coordinates along a field line. (For details of how we make 
this determination, see Ref. [4].) Equation (7) shows that, in the limit, a Fourier 
transform along a field line from 4 = -co to 4 = x consists of a set of delta func- 
tions. In practice we follow the field lines a finite number of times around the torus, 
and the spectral lines become envelopes of finite width. Figure 2 shows a Fourier 
transform of the Cartesian x coordinate along a field line for a stellarator magnetic 
field (described in Section V and Appendix A). A portion of the spectrum has been 
magnified to show the envelopes more clearly. The width of the envelopes is deter- 
mined by the distance over which the field lines are followed. If we wish to 
reconstruct x($, 8,d) from the information along the field line, we must follow the 
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FIG. 2. Fourier transform of the x Cartesian coordinate along a lield line as a function of 4. The 
magnetic field is that for the ATF stellarator described in Section V and Appendix A, with the field line 
lying on the outer flux surface (,f=O.975). 

field line suhiciently far to resolve the major lines of the Fourier spectrum. The 
distance over which the field line must be followed determines the computer time 
expended in calculating the magnetic coordinates by this method. 

The overlap of the spectral envelopes, known as “spectral leakage,” limits the 
accuracy with which the x,,’ s can be determined. To control the shape of the spec- 
tral envelopes, we follow the practice widely used in the Fourier transformation of 
time series of multiplying by a window function before Fourier transforming 
[22,23]. In the absence of the window function, a Fourier transform of x(d) 
produces envelopes with slowly decaying side-lobes. This is the well-known Gibbs 
phenomenon, which appears here because x is not a periodic function of Q. (The 
winding number j is generally an irrational number.) 

The use of a Gaussian window has the advantage of allowing an explicit calcula- 
tion of spectral leakage [4]. If k denotes a particular wave number, then multi- 
plying x(d) by the Gaussian window exp[ -(d/d,)*] and Fourier transforming 
from C$ = -Qr to 4 = cJ~ obtains a Fourier spectrum in which the spectral envelope 
corresponding to x,, has a tail of amplitude 

at any given value of k, where 

Ak=(n-,hz)-k. (19) 

The first term in Eq. (18) is small if 4, is sufficiently large. If the magnetic surface 
is nearly rational so that Ak is small, then dg must be especially large. The condi- 
tion that the second term in Eq. (18) be small requires that df/4g be sufficiently 
large. Therefore, on a magnetic surface that is nearly rational, the required field line 
distance, df, must become large and the efficiency of the field line following 
algorithm is reduced. 
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The computer time consumed by the field line following algorithm is typically 
dominated by the evaluations of the magnetic field. Let dk,,, denote the smallest 
distance to be resolved in Fourier space, i.e., 

dk,,,=min[(n,-,Wi)-(nj-tmi)] (20) 
i. , 

for the set of modes whose amplitudes are to be calculated. To reduce the spectral 
leakage below a given tolerance of s:, the width of the window function must be 
greater than 

4, = ji--4lnoidkn,, (21) 

The second term in Eq. (18) requires that the integration length, &, be large 
compared to dg, 

(22) 

In following a magnetic field line (i.e., integrating Eq. (4)) with a differential 
equation solver, the step size in 4 must be less than the smallest spatial scale over 
which the magnetic field is varying, Aqi The number of evaluations of the magnetic 
field required by the equation solver is, therefore, determined by the highest fre- 
quency component of the magnetic field. This is the same as the highest frequency 
component we must retain in our Fourier decomposition, 

AI+~ = z/Ak,,, 

= nl(n -tm),,,. (23) 

Let ni denote the number of integration steps required to traverse a distance Ad. 
Typically, ni z 10. Putting together Eqs. (21)-(23) and recalling that we must 
evaluate each of the three components of the magnetic field at each integration step, 
we find that the total number of magnetic field evaluations required to calculate the 
magnetic coordinates is 

6n, In E Ak,,, 
7l 

- sz 20 In E Ak,,,lAk,,, 
Akmn 

(24) 

Near a low order rational surface, Ak,,, becomes small, and the value of the 
expression in Eq. (24) becomes large. Field line following methods are inefficient 
there. The Fourier decomposition along the field line, Eq. (7), has modes with very 
long wavelength, requiring field line following over long distances for their accurate 
calculation. This is the Fourier space counterpart of the observation that many 
transits are required to sample adequately the flux surface (Fig. 1). It is clear from 
these considerations that the inefficiency is not limited to a particular scheme, but 
is common to all methods which construct action-angle variables from trajectory 
information. For this reason, we turn now to a consideration of iterative methods. 
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IV. PICARD ITERATION 

Picard iteration offers a relatively simple procedure for determining the solution 
of Eq. (10) and Eq. (11). When the Picard iteration procedure works, it is found to 
be an efficient method for calculating action-angle variables. It is therefore of 
interest to know for what type of problem the procedure works. Numerical insta- 
bilities are found in certain cases. These can sometimes be cured by incorporating 
spectral information from field line following in the iteration procedure. 

Given a nonlinear vector equation 

z-f(z) = 0, (25) 

the Picard iteration procedure [24] for determining a root of Eq. (25) takes the 
form 

Z(l+ 1) = f(z’/‘), (26) 

where I indicates the iteration number. For the Fourier space representation of 
Hamilton’s equations the iteration scheme takes the form 

t CL+ 1) = (p”)g 

xc’+ ‘) = (JJB);;~/(~ -t”+ I’m). nm 
(27) 

Clearly, Eq. (27) cannot be used to determine the n =O, m =0 Fourier com- 
ponents of x. To calculate these modes we make the modification of adding a term 
cooxoo to the left and right sides of Eq. (10). A sensible choice for coo is suggested 
by Taylor expanding around the true solution and seeking optimal convergence for 
xoo. This is achieved if coo is equal to the gradient of (YB),,. To avoid calculating 
derivatives, however, we prefer to choose c o. =I which is motivated by the fact that 
this can be shown to be an optimal choice when the flux surfaces are circular. (See, 
for example, the Hamiltonian oscillator model with r3 = ~1~ = 0). The equation for 
xoo is therefore 

t/+ 1) - (/I x00 - xoo - L$Woo/t(‘+ I). (28) 

This modification is equivalent to explicitly pulling the $q2 harmonic oscillator 
piece out of the Hamiltonian [17]. 

For the calculations presented in this paper, a flux surface is specified by fixing 
its intersection with the midplane at B=O, 4= 0. To enforce this restriction the 
n = 0, m = 1 Fourier component of x is evaluated using 

x - 1 - 1 x,,,,, I 01 - (29) 
nm 

instead of using Eq. (27) (cf. Ref. [ 171, where a constraint of constant action was 
imposed to calculate the fundamental harmonics). 
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To study convergence of the Picard iteration procedure we consider an 
application to the anharmonic oscillator model Eq. (16) for different values of the 
nonlinear coupling parameters. In particular, results for three cases are presented: 

(i) &=0.14, c(~ =O.O, a,=0.2 

(ii) lo = 0.14, xi = 0.0, ~1~ = 20.0 

(iii) j0 = 0.14, xi = 0.0, LX., = -0.248. 

Flux surfaces for the three cases are shown in Fig. 3. As CL, is increased from zero, 
the outer flux surfaces become elongated and squared off at the top and bottom. 
As CL, is decreased from zero the outermost surface approaches a separatrix, 
which is achieved for c(~ = -0.25. Since the poloidal flux function is axisymmetric 
(independent of d), modes with different toroidal mode number are decoupled from 
one another. We restrict attention to n = 0, and set x,,, = 0 for all n # 0. 

The iteration is initialized using the Fourier components and I corresponding to 
circular flux surfaces. At each step of the iteration the difference is calculated 
between values of x,, obtained from the Picard iteration and “exact” values 
obtained by Fourier transforming along the field lines. Figure 4 is a plot showing 
the convergence of the fundamental harmonic, yO,, as a function of iteration num- 
ber. Since (lm) Q,,, = -B” = k?$,,/~?y is linear in y, whereas (jm)yoM = -B’ = &+b,ldx 
is nonlinear in x for the model problem, the Picard iteration scheme produces 
substantial changes in a given Fourier component only on alternate iterations. This 
behavior is clearly visible in the convergence for c(~ = 0.2 in Fig. 4. 

When a(4 is small the rate of convergence is independent of Q. The rate is 
approximately independent of iteration number for iterations after the second, with 
the error decreasing by a factor of about 0.1 per alternate iteration. The rate of con- 
vergence decreases as a4 and the degree of surface distortion increases. For CL, = 20.0 
the error decreases by a factor of about 0.8 per iteration. For this case the outer flux 
surface has an elongation of about 6.5. With Q = -0.248, the outer flux surface is 
close to a separatrix surface, yet the error still decreases at a rate of about 0.7 per 
iteration. 

As x4 is increased, an increasing number of Fourier harmonics are needed to 
provide an accurate representation of a flux surface. The rate of convergence of the 
Picard iteration appears to be insensitive to the number of harmonics retained. For 
example, we have run CQ = 1.0 with six Fourier harmonics, and then with eleven 
harmonics. Also, we have run CQ = 5.0 with 12 harmonics and with 19. We find in 
both cases that the convergence is almost identical until the magnitude of the 
residual becomes comparable with the magnitude of the Fourier truncation error. 

For c(~ = 0 the symmetry of the flux function dictates that xoo is fixed throughout 
the iterations. To test the iteration scheme for xoo requires setting z3 to a non-zero 
value. When this is done, the scheme using Eq. (28) typically converges for the first 
few iterations, but ultimately diverges. To cure this problem, information from field 
line following has been used to develop an alternative iteration equation for x0”. 
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FIG. 3. Flux surfaces for the anharmonic oscillator with three different values of the nonlinear 
coupling parameters. 

Equation (18) gives a set of linear relations between the numerically calculated 
Fourier transforms along the field lines and the Fourier components of x, 

L, = c x,,,m, exp[-(n-jm-n’++Im’)2@4], (30) 
ll’nl’ 

where 1,, is the amplitude of the numerically evaluated one-dimensional Fourier 
transform along a sufficiently long field line at k = n -true. Since the left-hand side 
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FIG. 4. Convergence of Picard iteration of the anharmonic oscillator case with c() = 0 and the values 
of q shown in the figure. The vertical axis corresponds to the difference between the value of the n = 0, 
m = 1 component of y from the direct Fourier transform calculation and that from the iterative 
calculation. 

of Eq. (30) is a known quantity, this equation defines a set of linear relations 
between the x,,,‘s which can be used to eliminate one or more of the nonlinear 
equations (27) and (28). In particular, we cure the Picard iteration scheme for 
calculating xoO y b substituting the n = 0, m = 0 component of Eq. (30) for Eq. (28). 
The modified Picard scheme is found to converge rapidly, and the convergence 
properties for finite a3 are similar to those for CL~ = 0. 

We find that the stability of Picard iteration is unreliable in three dimensions. In 
particular, it does not converge for the stellarator fields described in Appendix A. 
Even for the two-dimensional anharmonic oscillator, II # 0 Fourier components, 
X ,,m 2 grow up from noise when they are not set equal to zero at each stage of the 
iteration. 

The question remains whether Picard iteration can be stabilized by incorporating 
a sufficient number of constraints from field line following of the form of Eq. (30). 
A straightforward stability analysis of Picard iteration for CI~ and CI, small indicates 
that near-resonant modes, In -$rnl < 1#1, pose the greatest difficulty for stability. 
Since these are also precisely the modes whose amplitude we are most interested in 
calculating iteratively, this suggests that Picard iteration is not sufficiently stable for 
our purposes. We therefore turn to Newton’s method. 

V. NEWTON’S METHOD 

Given the nonlinear vector equation, Eq. (25) the Newton iteration scheme takes 
the form [24] 
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where J is the Jacobian matrix of first derivatives 

J, = gf,/‘/aZj 

To apply Newton’s method to Eq. (lo), we need to evaluate gradients of the form 
QWqm,Ihq,,. In Appendix B we show how these gradients can be conveniently 
expressed in terms of the Fourier components of V($B). 

To examine the convergence of the Newton iterations, we monitor the residual 

E max =max(/x,,,- (~B).,,l(~ -lm)l, II- (d~“)ool)~ (31) 

When this number is less than some preset tolerance, typically of the order of 10 5, 
we consider the iteration procedure to be converged. We verify that the Newton 
iteration scheme gives the same results as field line following, to within the preset 
tolerances and the expected truncation errors. 

We first study the convergence properties for the simple anharmonic oscillator 
Hamiltonian with cx3 = 0 and small CQ. To determine the dependence on the number 
of poloidal modes, we have run the zq = 0.2 case with 6 and with 41 poloidal har- 
monics, and with the single toroidal harmonic II = 0. For the initial guess, circular 
flux surfaces with the appropriate t independent of r were assumed. For both runs, 
Newton’s method was found to converge to a maximum residual less than 10 5 
after three iterations. Despite the simplicity of the magnetic field model used in the 
calculation, the time required for the Newton iterations was found to be dominated 
in each case by the magnetic field evaluations rather than the Jacobian matrix 
inversion. 

The number of magnetic field evaluations required by the field line following 
method depends only weakly on the number of poloidal harmonics, and varies from 
890 for 6 harmonics to 929 for 41 harmonics. In contrast, the number of evaluations 
required to Fourier decompose the held for the iterative schemes is approximately 
proportional to the number of harmonics. This number is 520 for the Newton itera- 
tion with 6 modes, and 3320 for 41 modes. In making these comparisons, it should 
be kept in mind that in practice the number of modes retained will be determined 
by the need to resolve adequately the structure of the flux surfaces. Any line-scale 
structure that requires us to retain a large number of modes would also require a 
large number of evaluations in following the field lines. 

When additional toroidal harmonics are included, resonances may be introduced. 
To study the effect of resonances, we have run a sequence of cases with (x4 = 0.2 
with three toroidal harmonics (n = - 1, 0, 1) and three poloidal modes (nz = 0, 1, 2). 
For the chosen value of CC~ the 1 profile varies little across the plasma, increasing by 
about 10% from the magnetic axis to the edge. The value of j at the magnetic axis 
is specified by the input parameter &. We run with a range of values of to to 
investigate the effect of I approaching $ (an n = 1, m = 4 resonance) on the outer 
flux surface. Figure 5 is a plot of the number of magnetic field evaluations needed 
for both the field line following method and Newton’s method as a function of I, 
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t 

FIG. 5. A series of runs for the anharmonic oscillator with czj = 0 and x4 = 0.2, using both trajectory 
following and Newton iterative algorithm. The .x-coordinate is /, the rotational transform on the outer 
flux surface; [ is varied by choosing different values for [a. The pcoordinate is the number of evaluations 
of the magnetic field required to calculate the magnetic coordinates on the outer surface. 

the transform on the outer flux surface. The resonance does not affect Newton’s 
method at all for this range of winding numbers. This is not an obvious result, since 
a near resonant n - jm denominator appears in the function whose zero we are 
seeking, x,,, - (fB),M/(n -im). The number of evaluations required by the field 
line following method goes like l/(~ -tm). Although the n = 1 harmonic is not, of 
course, required for the calculation in this case, the addition of a small n = 1 pertur- 
bation to the magnetic field would force us to retain that mode when calculating 
action-angle coordinates, with results similar to those shown in Fig. 5. 

When CL, is increased, difficulties appear for a pure Newton’s method. For 
r4 = 0.5, the number of Newton iterations required with 41 modes increases to 5, 
a 60% increase, while the number of evaluations required for the field line 
following calculation increases by 32 %. For CQ = 1.0, the pure Newton’s method no 
longer converges with the surfaces initially circular and the corresponding initial 
guess for 1. 

To study the effects of the initial guess on the stability of Newton’s method, we 
next improve our initial guess by using accurate values (to within a tolerance of 
10 ‘) for [ and yol calculated by field line following. The case with CQ = 1.0 now 
converges in three iterations, as does the case with c(~ = 2.0. The algorithm remains 
divergent for r4 = 5.0. It converges in two iterations for CQ = -0.15, and in four 
iterations for a4 = - 0.22, CL~ = -0.24, and r4 = -0.245. The algorithm diverges for 
r4 = - 0.248. In Ref. [ 111, an improvement in convergence properties was achieved 
by first iterating with a small number of modes, and then using the results to 
initialize a calculation with a larger number of modes. For the anharmonic 
oscillator case with a4 = -0.248, we find Newton’s method to be divergent for both 
19 and 4 modes, even with both / and ylo initialized to accurate values, and with 
the xoO and xIO equations replaced by linear relations. 
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The situation changes when we improve the initial guess for the remaining 
Fourier harmonics. We follow the field lines for a moderate distance to determine 
the Fourier coefficients to a relatively low accuracy, and we use these values to 
specify the initial guess for Newton’s method. The Newton iterations now converge 
for both CQ = 20.0 and ~1~ = -0.248. A plot of the convergence as a function of the 
iteration number is shown in Fig. 6 for three different values of zq. 

For CY~ = 20.0, we initialize by following the field lines nine times around the 
torus, giving an initial residual of about 0.5. After three Newton iterations, the 
residual goes down to 6.5 x 10P5. The pure field line following approach requires us 
to follow the field lines 38 times around the torus to achieve this accuracy. The field 
line following method is near the limit of its accuracy for this value of the residual. 
The roundoff errors in following the field lines prevent us from decreasing the 
residual further by this method. The pure field line following approach requires 
11,043 field line evaluations, compared with a total of 8656 evaluations required by 
the hybrid approach. We retain 41 poloidal modes in these calculations. 

In all of the calculations described thus far, we have substituted Eq. (11) for the 
n=o, m=l component of Eq. (10). We have rerun the cases shown in Fig. 6, 
retaining the n = 0, m = 1 equation rather than Eq. (11). The results are shown in 
Fig. 7. We find that the convergence is somewhat more rapid with this scheme. We 
therefore retain this scheme for the following calculations with stellarator fields. 

The numerical experiments with the anharmonic oscillator Hamiltonian lead us 
to conclude that Newton’s method alone is insufficiently stable to be a generally 
useful algorithm for finding action-angle variables. A moderately accurate initial 
guess is required to provide stability. A hybrid scheme, in which field line following 
is used to provide this moderately accurate guess appears to work well. In the 
absence of resonances, the efficiency of the hybrid scheme is comparable to that of 
pure field line following. When resonances appear, pure field line following becomes 

1 o-12.1 
Q 

’ ’ 7 1 7 ’ 
0 1 2345678 

Iteration # 

FIG. 6. Convergence of Newton’s method initialized by following field lines a moderate distance to 
determine the initial guess. 
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FIG. 7. Convergence porperties when the n = 0, m = 1 component of Eq. (10) is retained rather than 

Eq. (11). 

slow, and we would expect the hybrid scheme to give much superior efficiency. We 
test this expectation for a case of practical interest, a three-dimensional stellarator 
vacuum field. 

The stellarator example we consider is the same as that used in Ref. [4]. The 
vacuum field solution is described in Appendix A. We choose parameters corre- 
sponding to the ATF stellarator at Oak Ridge. The winding number ranges from 
0.308 at the magnetic axis to 0.975 at the edge. There are N= 12 toroidal field 
periods. 

For the anharmonic oscillator Hamiltonian, we have an analytic expression for 
the x and y Cartesian coordinates components of the magnetic field. This allowed 
a direct evaluation of the right-hand side of Eq. (10) in Cartesian coordinates. The 
general situation is somewhat more complicated. The magnetic field is often 
specified in a non-Cartesian coordinate system. For the numerically determined 
stellarator vacuum field, we work in a coordinate system in which the outer 
coordinate surface coincides with the plasma boundary. For our applications to the 
solution of three-dimensional equilibria [25, 261, we need to work in a general 
curvilinear coordinate system. The modifications to the algorithm necessary to 
handle this are discussed in Appendix C. 

To determine the effect of resonances for the stellarator model, three cases were 
run, one in which we retain all modes with - 3 d n < 3, 0 6 m < 6, one in which we 
retain - 3 d n < 3, 0 < m d 10, and another in which we retain poloidal mode num- 
bers up to m = 13. In the first case no resonance condition (dkmi, = 0 in Eq. (20)) 
is satisfied among the modes, since minV(N(ni - n,)/(m, - m,)) > 1.0 and [ < 0.975 in 
the plasma region. Resonance effects begin to appear when modes are retained 
having m > 6. Field line following methods have difficulty distinguishing the n = 0, 
n? = 7 mode from the n = 1, m = 6 mode near the j = g rational surface. Similarly, the 
n = 1, m = 7 mode is difficult to distinguish from the n = 0, m = 6 mode. The iden- 
tification of a pair of modes at the I= 9 surface is also problematical. The number 
of modes which are difficult to distinguish increases as we improve our angular 
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resolution, with the problem localized at the low order rational surfaces. When the 
m = 13 modes are included, the n = 1, m = 13 mode is itself resonant near the f = g 
rational surface. 

We calculate magnetic coordinates on 20 flux surfaces, ranging from the magnetic 
axis to the edge of the plasma. Every second one of these flux surfaces is shown in 
Fig. 8. The difficulties posed by the low order rational surfaces are compounded by 
the desirability of vectorizing the field line following. To vectorize, we follow each 
field line the same number of times around the torus. The number is determined by 
the stringent requirements posed near the low order rational surfaces. On the other 
hand, if we do not follow each field line the same distance, the gains are more than 
offset by the loss of vectorization. 

To apply the field line following method when we retain poloidal mode numbers 
up to m = 6, we find that field lines must be followed approximately 13.4 times 
around the torus, consuming about 70 s of cpu time on a Cray 2. When we retain 
poloidal modes up to m = 13, we require 100 circuits of the torus to do the calcula- 
tion purely by the line following method, and we consume 840 s of cpu time. 
Applying our hybrid approach to the same case, we first follow the field lines about 
14 times around the torus to determine the initial guess for Newton iteration, and 
then we iterate. The initial guess has a maximum residual of 5.5 x 10 3. One 
Newton iteration brings this down to 1.4 x 10P5, as compared with a residual of 
1.5 x lop5 obtained from the pure line following method. The total time consumed 
by the hybrid approach is 245 s, of which about 145 are consumed in the field line 
following part of the calculation. 

-1 

0 

1 

4? ~ 0 0 + 

FIG. 8. Flux surfaces of the ATF stellarator model. 
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VI. EFFICIENCY OF ITERATIVE METHODS 

In this section we use information obtained from the numerical experiments 
described in Sections IV and V to derive some general estimates of the efficiency of 
iterative methods. The effkiency of the iterative methods is comparable to that of 
trajectory-following methods for nonresonant calculations, but they do not see the 
same degradation in efficiency near low order rational surfaces. 

An iterative solution of Eq. (10) requires a Fourier decomposition of the right- 
hand side at each iteration. This requires that the right-hand side be evaluated on 
an (m + 1) x (2n + 1) (0, c$) grid on each surface. The three components of the 
magnetic field must be evaluated at each grid point, so there are 3(m + 1)(2n + 1) 
evaluations required at each iteration. 

For a linearly convergent scheme, such as Picard iteration, the error decreases by 
a fixed ratio at each iteration. Let us call this ratio A, the error amplification factor. 
For the cases discussed in Section IV, the value of A ranges from about 0.3 to about 
0.8. To achieve a required tolerance of F requires n,, steps, where 

n, = (In E - In sO)/ln A. 

z In .s/ln A, 

and where e0 is the initial error, which is typically of order one. The total number 
of evaluations required is 

3(m + 1)(2n + 1) In .s/ln A. (32) 

Division of Eq. (32) by Eq. (24) determines the relative number of evaluations 
required by Picard iteration and field line following. The ratio is 

x(m + 1)(2n + 1) Ak,,, 
2n, In A Aknax ’ 

For n = 0, the ratio is 

71 m-i-1 ___- 
2n,lnA m ’ 

In the absence of resonances, the two methods are comparable, with Picard itera- 
tion being somewhat more efficient. The advantage of Picard iteration would be 
great for the finite n near-resonant cases, but the method is generally unstable for 
these cases. 

Newton’s method requires the evaluation of the derivatives of the magnetic field 
components at each iteration. Assuming that radial derivatives are evaluated by 
finite differencing, we require a total of 9(m + 1)(2n + 1) evaluations at each itera- 
tion. The Jacobian matrix must also be inverted at each iteration. The time to 
invert a matrix goes up as the cube of the matrix dimension (the total number of 
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modes), while the number of required magnetic field evaluations scales linearly with 
the total number of modes. The time for Newton’s method will, in principle, be 
dominated by the matrix inversions rather than by the magnetic field evaluations 
when there is a sufficiently large number of modes retained. 

The time required for our matrix inversions on the Cray 2 is 1.5 x 10 -*N3 s. for 
large N, where N is the number of modes retained in the calculation. For the 
numerically specified magnetic fields (for example, for the stellarator calculations), 
each evaluation of a magnetic field component requires us to interpolate radially a 
set of Fourier components between grid surfaces, and then sum the interpolated 
Fourier amplitudes. The time required by a magnetic field evaluation therefore 
scales like N. For the stellarator calculations, the cpu time on the Cray 2 was 
5.3 x 10p6N s. The 9N evaluations required at each step of the Newton iteration 
procedure consume 4.8 x 10p5N2 cpu s. The crossover point at which matrix 
inversions begin to dominate the cpu time is N = 3200 modes. This is a very large 
number of modes. In particular, for all the runs described in Section V, matrix 
inversions consumed a very small fraction of the cpu time. 

Newton’s method is quadratically convergent. The error decreases at a rate given 
by ejrl = AE~ for some A, where E, denotes the error at the jth iteration. The 
required precision E is reached after nN iterations, where 

ln E = ln A” + ln crN z ln E:“. 

This gives 

nN rz In In E/in 2. 

For example, to achieve a precision of E = 10p5, about four iterations should be 
required. This is consistent with the observations of Section V. The total number of 
magnetic field evaluations required is therefore approximately 

36(m + 1)(2n + 1). 

This is comparable to the number of evaluations required by Picard iteration, and 
is also comparable to the number of evaluations required by trajectory following 
methods for nonresonant cases. For near-resonant cases, iterative methods are 
more efficient. 

VII. DISCUSSION 

We have found that both trajectory-following and iterative methods for 
computing action-angle variables have important drawbacks, and that the draw- 
backs of each can be ameliorated by hybrid schemes. 

Trajectory-following methods for calculating action-angle variables see a signifi- 
cant deterioration of their efficiency when the winding number is near a low order 
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rational. In the neighborhood of such a rational, the required integration length 
scales as l/(n -lm), where t is the local winding number and the mode numbers are 
m and ~1. The resulting inefficiency is compounded when vectorization of the 
calculation is desirable. For many applications the action-angle variables are 
desired on a set of surfaces. It is then desirable to vectorize the trajectory following. 
This requires that we follow each field line the same number of times around the 
torus, a number determined by the stringent requirements posed near the low order 
rational surfaces. On the other hand, if we do not follow each field line the same 
distance, the gains are more than offset by the loss of vectorization. 

Trajectory-following methods also see an absolute limit on the attainable 
accuracy due to the propagation of roundoff errors. The local numerical errors are 
amplified linearly as a function of the distance the trajectory is followed (assuming 
that the trajectory is integrable). The amplification factor can get large near a 
separatrix or near the stochasticty threshold. The local accuracy needed to give a 
specified global accuracy can be quite stringent. There is a limit on the local 
accuracy due to roundoff. This places a limit on the achievable global accuracy. 

Iterative methods do not see the same deterioration in efficiency near low order 
rational surfaces. Nor do they suffer from the limitations on accuracy due to 
propagation of roundoff errors. They do, however, display numerical instabilities. 
Trajectory-following methods, in contrast, are robust. 

We have studied the use of both Picard and Newton iteration methods for the 
calculation of action-angle variables, both alone and in combination with field line 
following methods. 

Instability is a serious problem for Picard iteration. Its stability can be improved 
somewhat by using information from trajectory following to obtain modified 
iteration schemes. Nevertheless, even in this hybrid form, Picard iteration is not 
sufficiently stable to provide a generally useful procedure for calculating action- 
angle variables. 

Instabilities are also a major liability for a pure Newton’s method, in which a 
rough initial guess is obtained from analytical estimates. Newton’s method is 
extremely sensitive to the initial guess. However, given a sufficiently accurate initial 
guess, we have always found it to be stable. This suggests a hybrid scheme in which 
the initial guess for the action-angle variables is obtained by trajectory-following 
methods, with the solution then refined by Newton iteration. 

For the stellarator cases that we studied, which are of practical interest for 
plasma physics applications, we found that there were a small number of relatively 
low amplitude Fourier modes whose accurate calculation by trajectory-following 
methods would require long integration lengths. The remaining modes could be 
efficiently calculated by trajectory-following methods. A single pass of the Newton 
iteration procedure then sufficed to complete the accurate calculation of the 
magnetic coordinates. 

Further improvements in the hybrid scheme are also possible, with the nonlinear 
equations for a large subset of the modes replaced by the corresponding linear 
equations obtained from trajectory following, Eq. (30). Because the linear equations 
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are solved exactly with each inversion of the Jacobian matrix, we would expect that 
the convergence of the Newton method could be speeded up in this way. Improved 
equations for a subset of the modes could also relax the accuracy requirement for 
the initial guess of the remaining mode amplitudes. We have implemented such a 
replacement only for the m = 0, n = 0 Fourier component of our equation. 

These observations can be reformulated as a set of recommendations on when to 
use the various computational methods. If the winding number is not near a low 
order rational (i.e., if II - om is not much less than one for the mode numbers 
retained in the calculation), then trajectory following is comparable in efficiency to 
iterative methods. The robustness of trajectory following then recommends it as the 
method of choice, as long as the required accuracy is not so small that roundoff 
errors are a problem. Roundoff errors become an issue for trajectory following 
methods even at moderate accuracy if a trajectory approaches the transition to 
chaos. 

Considerations of efficiency make Newton’s method increasingly desirable as the 
winding number approaches a low order rational. (Picard iteration appears to be 
generally unstable near low order rationals, and is therefore not a viable alter- 
native.) For those special cases where an accurate initial guess is at hand, Newton’s 
method alone may be adequate. In general, a hybrid scheme is desirable. If roundoff 
errors are an issue, Newton’s method is again called for, either alone or in combina- 
tion with trajectory following. 

In conclusion, we have found that a hybrid approach to the computation of 
action-angle variables, using both trajectory following methods and Newton’s 
method, can combine the best features of both methods. Given a moderately 
accurate initial guess obtained from line following, Newton’s method has been 
found to be robustly stable. The refinement of the solution by Newton’s method 
eliminates the need to follow trajectories over inordinate distances when the 
winding number is near a low order rational. 

APPENDIX A: TEST CASES 

In Sections IV and V we describe a series of numerical experiments in which we 
test iterative methods for the calculation of action-angle variables, both alone and 
in combination with trajectory following methods. The relatively simple anhar- 
manic oscillator test case is described in Section II. In this appendix we give a 
detailed description of our stellarator test case. 

For a case which is of practical interest in plasma physics, we construct an I= 2 
stellarator vacuum field in a torus, with parameters corresponding to the ATF 
device at Oak Ridge [27]. To obtain the vacuum field we solve Laplace’s equation 
for the scalar potential of the magnetic field, 

B=VL (AlI 

with the boundary condition n . Vx = 0, where n is the unit normal to the outer flux 
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surface. Laplace’s equation is solved using a Fourier representation in the toroidal 
and poloidal angles, and second-order finite differences in the radial direction, with 
the resulting block tridiagonal matrix inverted by Gaussian elimination [26]. For 
the examples discussed in Section V we used 20 radial grid surfaces. The outer flux 
surface is specified by the Bessel function solution for the cylindrical vacuum field, 

x = B,# + bz I, (Nr/R) sin(20 - 2N4), (A21 

where N = 12 is the number of periods, and R = 7 is the major radius. The ratio 
b,/B, determines the winding number. We choose a value which is appropriate for 
ATF, 2Nb,/Bo=0.633, giving a winding number which ranges from 0.308 at the 
axis to 0.975 at the edge. To evaluate the stellarator magnetic field at a given point, 
we interpolate its Fourier coefficients radially using splines, and then we sum the 
interpolated Fourier components. 

APPENDIX B: EVALUATION OF THE JACOBIAN MATRIX 

To apply Newton’s method to Eq. (lo), we need to evaluate the gradients of 
the Fourier coefficients of $B with respect to the Fourier coefficients of 
x> UW,,n,,Pxn,,,. We could directly calculate each of these derivatives numeri- 
cally by independently varying each x,, and determining the corresponding varia- 
tion in each of the Fourier components of YB. This would require 6(m + 1)(2n + 1) 
magnetic field evaluations for each Fourier component of x, for a total of 
12(m + 1 )2(2n + 1)2 evaluations. If that many evaluations were necessary, it would 
make Newton’s method uninteresting. Fortunately, we can express CY(2B),,,,/axnZnlZ 
in terms of the Fourier components of V($B). The calculation of V(yB) requires 
three evaluations at each point of an (172 + 1) x (2n + 1) grid. 

In this appendix we show how to express d(/B),,,,,/a~,~~,,~~ in terms of the 
Fourier components of V(fB). For simplicity, we include details only for 
~(cFB”L,m, i4hnlq 

From - _ 
The derivation is similar for the other vector components. 

and 

we obtain 

032) 



248 REIMAN AND POMPHREY 

This gives 

where 

D;:;1m2= WNKZ” n,,n2 m-b,:;+n.m2+,J. 
Similarly, we find 

(B3) 

(B4) 

APPENDIX C: COMPUTATION OF MAGNETIC COORDINATES FOR A 
MAGNETIC FIELD GIVEN IN CURVILINEAR COORDINATES 

In describing algorithms for the computation of magnetic coordinates at the 
beginning of Sections IV and V, we assumed that the magnetic field is specified in 
Cartesian coordinates. In that case, Eq. (10) can be used to solve iteratively for 
x($, 8, d), the transformation from magnetic coordinates to Cartesian coordinates. 
More generally, the magnetic field is often given in a curvilinear coordinate system. 
In this appendix we describe the modifications required to compute magnetic coor- 
dinates in that case. 

Suppose that the magnetic field is given in a coordinate system (p, 0, d), and that 
x(p, 0, 4) is also given. For simplicity, we assume that 4 is the uniform geometric 
toroidal angle used throughout this paper. The iterative solution of Eq. (10) for 
x($, 0,4) would require an evaluation of the magnetic held B on a (II/, 8,d) grid, 
so that we could Fourier decompose B in 8 and 4 for a fixed $. Since x is a given 
function of ($, 0,4) at each step, this could be accomplished by an inversion of 
x(p, 8, 4). Inversion of this function at each iteration step would dominate the time 
required by the iterative algorithm, and would greatly decrease the attractiveness of 
such algorithms. Alternatively, one could construct a scheme in which this function 
is inverted only once at the beginning, and the inverse stored in some form for 
application at each iteration of the algorithm. The inversion would have to be 
performed over a sufficiently large domain so that the subsequent evaluations of 
x(ll/, 0, 4) all lie within its range. This approach would be cumbersome. 

We formulate an alternative iterative scheme by defining “pseudo-Cartesian coor- 
dinates,” 

< = p cos( d), y = p sin(o). 

The chain rule for differentiation gives 
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or 

Fourier decomposition in B and 4 gives an equation analogous to Eq. (10). A 
similar equation is obtained for q. These equations can be solved iteratively for 
t($, 9, 4) and q($, 0, 4) in precisely the same way that Eq. (10) is solved for 
x(rl/, 0, d). The solution is substituted into x(p, 8,$) to determine x($, 0,d). 
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